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ABSTRACT Rajendran B, Murugan V, Premnath K,  Gomez P., Neighbour joining microarray data clustering algorithm, Online J Bioinformatics, 12(2):274-288, 2011 Gene clustering groups related genes into a same cluster. K-means clustering algorithm is used for gene expression analysis, but has drawbacks which affect the accuracy of clustering.  Neighbour-Joining (NJ) has been widely used for phylogenetic reconstruction combining computational efficiency with reasonable accuracy: RapidNJ is an extension of the algorithm which reduces the average clustering time. However, the large O (n2) space consumption of RapidNJ is a problem when inferring phylogenies with large data sets. This work describes a method to reduce memory requirements and enable RapidNJ to infer large data sets. An improved heuristic search for RapidNJ improves performance on data sets. Performance of RapidNJ was evaluated against accuracy and time and tested against lymphoma and leukemia data sets. 

Keywords---Gene clustering, DNA, microarray, Neighbor Joining, RapidNJ
INTRODUCTION

Generally, K-means clustering algorithm has been extensively used for gene expression analysis.  K-means technique is found to be very simple and it can be easily applied to Micro array data for gene clustering and pattern recognition. But there are several drawbacks (which are????) in K-means clustering technique which affects the accuracy of the clustering results. Neighbor-joining [5] is a method that is related to the cluster method but does not require the data to be ultrametric. In other words it does not require that all lineages have diverged by equal amounts. The method is especially suited for datasets comprising lineages with largely varying rates of evolution. It can be used in combination with methods that allow correction for superimposed substitutions. The main principle of this method is to find pairs of taxonomic units that minimize the total branch length at each stage of clustering. The distances between each pair of instances (data collection sites) are calculated and put into the n×n matrix, where n represents the number of instances. In biology, the neighbor-joining algorithm has become very??? popular and widely used method for reconstructing trees from distance data. It is fast and can be easily applied to a large amount of data. RapidNJ is an extension of NJ approach which greatly reduces the average clustering time. This paper proposes an improved RapidNJ approach for gene clustering which provides better (delete) accuracy and takes less clustering time.

INTRODUCTION What is this? A second intro????
I would suggest delete ALL this section below Introduction
This paragfraph needs to be re written one cannot tell whether they are talking about other authors or themselves please distinguish one from other
Clustering is a popular technique for analyzing microarray data sets, with n genes and m experimental conditions. As explored by biologists, there is a real need to identify coregulated gene clusters, which include both positive and negative regulated gene clusters. The existing pattern-based and tendency-based clustering approaches cannot directly be applied to find such coregulated gene clusters, because they are designed for finding positive regulated gene clusters. In this paper ??????(this paper or their paper????, in order to cluster coregulated genes, Yuhai Zhao et al., [6] propose a coding scheme that allows us to cluster two genes into the same cluster if they have the same code, where two genes that have the same code can be either positive or negative regulated. Based on the coding scheme, we propose a new algorithm for finding maximal subspace coregulated gene clusters with new pruning techniques. A maximal subspace coregulated gene cluster clusters a set of genes on a condition sequence such that the cluster is not included in any other subspace coregulated gene clusters. The author conducted extensive experimental studies.???? Our approach can effectively and efficiently find maximal subspace coregulated gene clusters. In addition, our approach outperforms the existing approaches for finding positive regulated gene clusters.
Same problem as above

The application of semantic similarity measures on gene data using Gene Ontology (GO) and gene annotation information is becoming more widely used and acceptable in the recent years in bioinformatics. The purpose of this application can range from gene similarity to gene clustering. In this paper, ???????Nagaret et al., [7] investigate a simple measure for gene similarity that relies on the path length between the GO annotation terms of genes to determine the similarity between them. The similarity values computed by the proposed measure for a set of genes will then be used for clustering the genes. In the evaluation, we compared the proposed measure with two widely used information-theoretic similarity measures, Resnik and Lin, using three datasets of genes. The experimental results and analysis of clusters validated the effectiveness of the proposed path length measure.
Authors will have to condense all this to one short paragraph far too much irrelevant details

A single DNA microarray measures thousands to tens of thousands of gene expression levels, but experimental datasets normally consist of much fewer such arrays, typically in tens to hundreds, taken over a selection of tissue samples. The biological interpretation of these data relies on identifying subsets of induced or repressed genes that can be used to discriminate various categories of tissue, to provide experimental evidence for connections between a subset of genes and the tissue pathology. A variety of methods can be used to identify discriminatory gene subsets, which can be ranked by classification accuracy. But the high dimensionality of the gene expression space, coupled with relatively fewer tissue samples, creates the dimensionality problem: gene subsets that are too large to provide convincing evidence for any plausible causal connection between that gene subset and the tissue pathology. Zhipeng et al., [8] propose a new gene selection method, Clustered Gene Selection (CGS) which, when coupled with existing methods, can identify gene subsets that overcome the dimensionality problem and improve classification accuracy. Experiments on eight real datasets showed that CGS can identify many more cancer related genes and clearly improve classification accuracy, compared with three other non-CGS based gene selection methods.

Clustering of gene expression patterns is of great value for the understanding of the various molecular biological processes. While a number of algorithms have been applied to gene clustering, there are relatively few studies on the application of neural networks to this task. In addition, there is a lack of quantitative evaluation of the gene clustering results. Ji He et al., [9] propose Adaptive Resonance Theory under Constraint (ART-C) for efficient clustering of gene expression data. We illustrate that ART-C can effectively identify gene functional groupings through a case study on rat CNS data. Based on a set of quantitative evaluation measures, we compare the performance of ART-C with those of K-Means, SOM, and conventional ART. Our comparative studies on the yeast cell cycle and the human hematopoietic differentiation data sets show that ART-C produces reasonably good quantitative performance. More importantly, compared with K-Means and SOM, ART-C shows a significantly higher learning efficiency, which is crucial for knowledge discovery from large scale biological databases.

Entities of the real world require partition into groups based on even feature of each entity. Clusters are analyzed to make the groups homologous and well separated. Many algorithms have been developed to tackle clustering problems and are very much needed in our application area of gene expression profile analysis in bioinformatics. It is often difficult to group the data in the real world clearly since there is no clear boundary of clustering. Gene clustering possesses the same problem as they contain multiple functions and can belong to multiple clusters. Hence one sample is assigned to multiple clusters. A variety of clustering techniques have been applied to microarray data in bio-informatics research. Sen et al., [10] have proposed in this paper an easy to implement evolutionary clustering algorithm based on optimized number of experimental conditions for each individual cluster for which the elements of that group produced similar expression and then compared its performance with some of the previously proposed clustering algorithm for some real life data that proves its superiority compared to the others. The proposed algorithm will produce some overlapping clusters which reimposes the fact that a gene can participate in multiple biological processes.

Microarray technology enables the study of measuring gene expression levels for thousands of genes simultaneously. Cluster analysis of gene expression profiles has been applied for analyzing the function of gene because co-expressed genes are likely to share the same biological function. K-MEANS is one of well-known clustering methods. However, it requires a precise estimation of number of clusters and it has to assign all the genes into clusters. Other main problems are sensitive to the selection of an initial clustering and easily becoming trapped in a local minimum. Zhihua Du et al., [11] present a new clustering method for microarray gene data, called ppoCluster. It has two steps: 1) Estimate the number of clusters 2) Take sub-clusters resulting from the first step as input, and bridge a variation of traditional Particle Swarm Optimization (PSO) algorithm into K-MEANS for particles perform a parallel search for an optimal clustering. Our results indicate that ppoCluster is generally more accurate than K-MEANS and FKM. It also has better robustness for it is less sensitive to the initial randomly selected cluster centroids. And it outperforms comparable methods with fast convergence rate and low computation load.

Many bioinformatics problems can be tackled from a fresh angle offered by the network perspective. Directly inspired by metabolic network structural studies, we propose an improved gene clustering approach for inferring gene signaling pathways. Based on the construction of co-expression networks that consists of both significantly linear and nonlinear gene associations together with controlled biological and statistical significance, it is possible to make accurate discovery of many transitively coexpressed genes and similarly coexpressed genes. Zhu et al., [12] approach tends to group functionally related genes into a tight cluster. The author illustrates the proposed approach and compares it to the traditional clustering approaches on a retinal gene expression dataset.

MATERIALS AND METHODS This below should be part of introduction not M and M
The neighbour-joining (NJ) method (Saitou and Nei, 1987) is a widely used method for phylogenetic inference, made popular by reasonable accuracy ?????combined with a cubic running time by Studier and Kepler (Studier and Kepler, 1988) [13]. The NJ method scales to hundreds of species, and while it is usually possible to infer phylogenies with thousands of species, tens or hundreds of thousands of species is computationally infeasible???. Implementations like QuickTree [14] and QuickJoin [15] use various approaches to reduce the running time of NJ considerably, and recently we presented a new heuristic, RapidNJ [16] which uses a simple branch and bound technique to reduce the running time even further. Though RapidNJ is able to build NJ trees very efficiently it requires, like the canonical NJ method, [image: image2.png]a(n?)



space to build a tree with n taxa. The space consumption of RapidNJ, and the NJ method in general, is thus a practical problem when building large trees, and since RapidNJ uses some additional data structures of size [image: image4.png]a(n?)



, this method has limited application to data sets with more than 10,000 taxa which is of interest when building phylogenetic trees from e.g. Pfam sequence data. 

In this proposed approach, two extensions are presented for RapidNJ which reduce the memory requirements of RapidNJ. The first extension uses a simple heuristic which takes advantage of RapidNJ’s memory access pattern to reduce the internal memory (RAM) consumption. 

The second extension is based on the first extension and makes use of external memory, i.e. a Hard Disk Drive (HDD) to alleviate internal memory consumption. We also present an improved version of the search heuristic used in RapidNJ which increases performance on data sets that RapidNJ has difficulties handling. The two extensions combined with the improved search heuristic allow RapidNJ to build large NJ trees efficiently which is important as sequence family data with more than 50,000 taxa are becoming widely available (Finn et al., 2006; Alm et al., 2005). Also, the NJ method is used as a clustering method in both micro array data analysis and metagenomics where data sets can become very large. Using the methods proposed in this paper, clustering of large data sets can be handled efficiently on normal desktop computers.

The Neighbour-Joining (NJ) Method

NJ is a hierarchical clustering algorithm. It takes a distance matrix D as input, where [image: image6.png]D(i,7)



is the distance between clusters i and j. Clusters are then iteratively joined using a greedy algorithm, which minimizes the total sum of branch lengths in the tree. Basically the algorithm uses n iterations, where two clusters [image: image8.png](4.9)



 are selected and joined into a new cluster in each iteration. The pair [image: image10.png](i.7)



is selected by minimizing 
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Where,
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and r is the number of remaining clusters. When a minimum q-value [image: image14.png]G = MMty < Q1S)



is found, D is updated, by removing the i’th and j’th row and column. A new row and a new column are inserted with the distances to the new cluster. The distance between the new cluster [image: image16.png]iUy



and one of the remaining clusters k, is calculated as
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The result of the algorithm is an unrooted bifurcating tree where the initial clusters correspond to leafs and each join corresponds to inserting an internal node in the tree.

RapidNJ

RapidNJ (Simonsen et al., 2008) computes an upper bound for the distance between clusters which is used to exclude a large portion of D when searching for minimum q-value. To utilize the upper bound two new data structures, S and I, are needed. Matrix S contains the distances from D but with each row sorted in increasing order and matrix I maps the ordering in S back to positions in D. Let [image: image20.png]0,0,




 be a permutation of 1, 2, . . . , n such that [image: image22.png]D(i0,) =D(i0,) = < D(i 0,),
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The upper bound is computed and used to speed up the search for a minimum q-value as follows. 

1. Set [image: image26.png]Imin = 1 = =1,
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2. for each row r in S and column c in r: 

(a) if [image: image28.png]S(r,e) = wl(r) = oy > Gonin



 then move to the next row. 

(b) if [image: image30.png]Qr 2(r €)) < Gy
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The algorithm searches S row-wise and stops searching within a row when the condition 
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is true, or the end of a row is reached. If we reached an entry in S where (3.6) is true, we are looking at a pair [image: image35.png](8.1,



 where [image: image37.png]D(i.1)



 is too large for [image: image39.png](4.9)



 to be a candidate for qmin, and because S is sorted in increasing order, all the following entries in [image: image41.png]S(D)



 can now be disregarded in the search.

When the cluster-pair [image: image43.png](i%.5)



 with the minimum qvalue is found, D is updated as described in Sec. 3.1. The S and I matrices are then updated to reflect the changes made in the D as follows. Row and column [image: image45.png]


 and [image: image47.png]


 are marked as deleted and entries in S belonging to these rows/columns are then identified using I and ignored in the following iterations of the NJ method. A new row containing the distances of the new cluster is sorted and inserted into S.

Proposed Methodology This is Materials and methods here!
The proposed approach uses two extensions for RapidNJ which reduce the memory requirements of RapidNJ. The proposed methodology is called as Improved RapidNJ (IRapidNJ)

Reducing the Memory Consumption of RapidNJ

RapidNJ consumes about four times more memory than a straightforward implementation of canonical neighbour-joining, which makes it impractical to use on large data sets. An extension to RapidNJ is proposed which reduces the memory consumption significantly while only causing a small reduction in performance.

First the size of the D matrix is reduced. RapidNJ stores the complete D matrix in memory, even though only the upper or lower triangular matrix is needed, because it allows for a more efficient memory access scheme. By only storing the lower triangular matrix, the size of D is halved without affecting performance seriously.

[image: image48.emf]
Figure 1: The maximum and average number of entries of each row in S that RapidNJ searched during each iteration of the NJ method when building a typical tree containing 10,403 taxa.

Secondly, the size of S and, consequently, I are reduced. As seen in Fig. 1, RapidNJ rarely needs to search more than a few percent of each row in S. Hence it is not necessary to store the full S matrix in memory to receive a speed up similar to the original RapidNJ method. An increase in both maximum and average search depth is observed when the last quarter of the clusters remains, but as the number of remaining clusters is low at this point, the increase only causes a relatively small increase in the total number of entries searched. The size of S is reduced by only storing as many columns of S as can fit in the available internal memory after D has been loaded. Of course we might not store enough columns of S to complete the search for [image: image50.png]T



in all rows of S, i.e. we might not reach an entry where (3.6) becomes true. If this happens then simply the corresponding row in D is searched. There is a lower limit on the number of columns of S we must store before the performance is severely affected, but there is no exact number as it depends on the data set. Our experiments imply that at least 5% of the columns in S are needed to receive a significant speed up in general.

An I/O Algorithm for Building Very Large Trees

Even when using the extension described in Sec. 4.1, RapidNJ will run out of memory at some point and begin to swap out memory pages to the HDD. This will seriously reduce the performance because the data structures used by RapidNJ are not designed to be I/O efficient. I/O efficiency is achieved by accessing data in the external memory in blocks of typical 4-8 KB corresponding to the block size B of the HDD used (Aggerwal and Vitter, 1988), and it is often better to access data in blocks larger than B to take full advantage of hardware and software caching. However, even when using an I/O efficient algorithm, accessing data in the external memory has very high latency compared to accessing data in the internal memory, thus external memory data access should be kept at a minimum.

RapidDiskNJ is an extension to RapidNJ which employs both internal and external memory storage efficiently. Because RapidNJ only uses S (and I) to search for qmin, D can be stored in the external memory without affecting performance significantly. Moreover, as explained in Sec. 4.1, RapidNJ usually only needs to search a small fraction of S in each iteration, so the total internal memory consumption can be reduced by only representing a sufficient part of S in the internal memory. Using external memory to store D affects the running time by a large but constant factor, thus RapidDiskNJ has the same [image: image52.png]0(n3)



 asymptotic running time as RapidNJ. qmin is found as described in sec. 4.1 the only difference being that searching D is done using the external memory.

Data Structures

D is stored row-wise in the external memory, so all access to D must be done row-wise as accessing a column of D would result in r I/O operations (read/write operations) assuming that an entry in D has size B.

A row in D can be accessed using [image: image54.png]rta



I/O operations where [image: image56.png]


is the size of an entry in D, which is much more efficient. As explained in Sec. 4.1 storing half of D is sufficient, but by storing the whole D-matrix in the external memory, all distances from one cluster to all other clusters can be accessed by reading one row of D. After each iteration of the NJ method, at least one column of D needs to be updated with new distances after a join of two clusters. This would trigger column-wise external memory access but by using an internal memory cache this can be avoided as described below. Deletion of columns in D is done in [image: image58.png]o(1)



 time by simply marking columns as deleted and then ignoring entries in D belonging to deleted columns. This gives rise to a lot of “garbage” in D, i.e., deleted columns, which need to be removed to avoid a significant overhead. In Sec. 4.2 an efficient garbage collection strategy to handle this problem is proposed.

RapidDiskNJ builds the S-matrix by sorting D row by row and for each sorted row the first [image: image60.png]


entries are stored in the internal memory where the size of  [image: image62.png]


  is [image: image64.png]™~



and M is the size of the internal memory. If enough columns of S can be stored in the internal memory, RapidDiskNJ can usually find [image: image66.png]T



using only S which means that RapidDiskNJ rarely needs to access the external memory.

The other half of the internal memory is used for caching columns of D. After each iteration a new column for D is created but instead of inserting this in D, The column is stored in an internal memory cache C. By keeping track of which columns have been updated and in which order, updated entries in D can quickly be identified and read from C. When C is full (i.e. the size has reached M2), all updated values in C are flushed to D, by updating D row by row which is more efficient than writing columns to D when C is large. 

Garbage Collection

Entries belonging to deleted columns are left in both D and S after clusters are joined. We just skip these entries when we meet them. This is not a problem for small data sets but in larger data sets they need to be removed to keep S and D as small as possible. Garbage collection in both D and S is expensive so RapidDiskNJ only performs garbage collection when C is flushed. During a flush of C, all rows in D are loaded into the internal memory where deleted entries can be removed at an insignificant extra cost. By removing entries belonging to both deleted rows and columns the size of D is reduced to r which makes both searching D and future flushes of C more efficient. Garbage collection in S is performed by completely rebuilding S during a flush of C. Our experiments showed that rebuilding S each time we flush C actually decreases performance because of the time it takes to sort D. We found that the best average performance was achieved if S was rebuild only when more than half of S consisted of garbage. During garbage collection of S the number of rows in S decreases to r, which allows more columns to be added to S so that S attains size M2 again.

4.1. Improving the Search Heuristic RESULTS (and discussion) HERE
RapidNJ uses the maximum average row sum umax to compute an upper bound on q-values. Initially row i in S only needs to contain i columns so a tighter bound can be computed if umax is computed for each row in S i.e. [image: image68.png](Do = MXpgrs (D))



For each new row i0 created after a join we assign [image: image70.png](i) g = MXgg1, (D)



 Updating the existing [image: image72.png](1 )mae



values can be done by updating u-values in the same order as the rows of S were created, assuming that the initial rows of S were created in the order, shortest to longest. Now [image: image74.png](max = Wonax



where [image: image76.png]


 is the largest u-value seen when [image: image78.png]u(d)



 is updated. This takes time [image: image80.png]o(r)



 The tighter bounds are very effective on data sets containing cluttering of taxa (where a group of taxa has almost identical distances to each other and a small or zero mutual distance), which gave rise to poor performance in RapidNJ. 

Redundant data (taxa with equal distances to all other taxa and a mutual distance of 0) is quite common in Pfam data sets. Redundant data often causes a significant loss of performance in RapidNJ because a lot of q-values fall under the upper bound at the same time forcing RapidNJ to search all pairs of redundant taxa in each iteration until they are joined. To address this problem we initially treat redundant taxa as a single taxon. When a cluster representing such a taxon is selected for a join, we only delete the cluster if the number of redundant taxa it represents drops to 0. Identifying and processing redundant taxa can be done in [image: image82.png]a(n?)



time in a preprocessing phase and reduces the problem of redundant taxa considerably.

Experimental Results

The performance of the proposed approach is evaluated using the metrics such as Clustering Accuracy and Clustering Time. The data sets used in this experimental observation are Lymphoma and Leukemia. 

5.1. Clustering Accuracy
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Figure 2: Comparison of Clustering Accuracy- leukemia data set

Figure 2 shows the clustering accuracy comparison of the proposed approach with the k-means technique. The clustering accuracy of the k-means clustering technique in the leukemia data set is 68.09 where as the clustering technique of the proposed IRapidNJ is 85.10.

Figure 3 shows the clustering accuracy of the proposed and the k-means approaches for lymphoma datasets. Four subtypes of Diffused Large B-cell Lymphoma (DLBCL) are used in this experiment. They are DLBCL A, DLBCL B, DLBCL C, DLBCL D.
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Figure 3: Comparison of Clustering Accuracy- leukemia data set

5.2. Clustering Time

The clustering time taken for the k-means and the proposed IRapidNJ technique is compared. Figure 4 shows the graphical representation of the clustering time comparison. It is observed from the graph that the proposed IRapidNJ takes very less time when compared with the k-means algorithm.
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Figure 4: Comparison of Clustering Time- leukemia data set

Table 1 shows the comparison of the clustering time for the DLBCL data sets. It is clearly observed from the table that, the proposed IRapidNJ technique takes very less time when compared to the traditional k-means approach.

TABLE 1

COMPARISON OF CLUSTERING TIME- LYMPHOMA DATA SETS
	Approaches
	Datasets

	
	DLBCL A
	DLBCL B
	DLBCL C
	DLBCL D

	K-means
	0.83
	0.81
	0.79
	0.9

	IRapidNJ
	0.54
	0.56
	0.53
	0.57


CONCLUSION

The proposed approach has presented two extensions and an improved search heuristic for the RapidNJ method which increases the performance of RapidNJ and decreases internal memory requirements significantly. The proposed Improved RapidNJ (IRapidNJ) technique overcomes the RapidNJs limitations regarding the memory consumption and performance on data sets containing redundant and cluttered taxa. The performance of the proposed IRapidNJ is evaluated on the standard datasets like Leukemia and lymphoma. The performance metric like clustering accuracy and clustering time are taken for the evaluation of the proposed approach.  From the experimental observation the proposed IRapidNj approach has a high clustering accuracy in both the data sets.  Moreover, the clustering time taken by the proposed IRapidNJ technique is less compared to the traditional K-means approach.
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